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Abstract

A technique to incorporate a small aperture model into
the Transmission Line Matrix (TLM) code based on
Bethe’s small hole coupling theory [1] is presented. Elec-
trically small apertures are modeled as electric and mag-
netic dipoles. A link between these equivalent dipoles and
a simple equivalent circuit is found and implemented in
the TLM mesh.

The method has been validated by calculating the first
resonant frequency of two cavities coupled by a narrow
aperture, and by comparing the results with those obtained
by TLM analysis with increasingly denser meshes. The
obtained results confirm the validity of the approach and
the high potentiality in terms of accuracy and savings in
memory and CPU time requirements.

Introduction

Small apertures in a conductive wall are particularly
difficult to model in space discrete methods since a high
mesh resolution is required in order to achieve a good field
description inside the aperture. Such small apertures, how-
ever, are very common in EMC/EMI problems, antenna
arrays, and waveguide couplers.

When the dimensions of the aperture are much smaller
than the other dimensions of the structure under test, dis-
cretization of the aperture leads to a mesh with cells that
vary considerably in size throughout the structure. As a
consequence, the required time step become extremely
small. If the aperture were not present, a cell size much
larger than the aperture dimension would be sufficient.

Unless the spatial cell size is reduced down to that
required to resolve the aperture, alternative methods must
to be used to characterize the aperture. Several solutions
have been proposed in the past for both Finite-Difference

Time-Domain (FDTD) and Transmission Line Matrix
(TLM) method [2-6].

In this paper a novel and effective way to introduce a
small aperture model into the TLM standard algorithm is
described. The presence of a small aperture is modeled by
introducing an equivalent circuit into the TLM network.
The circuit parameters are derived from the electric and
magnetic polarizabilities associated with the geometrical
dimensions of the aperture. In this way a single cell can be
placed on the aperture while maintaining a high degree of
accuracy.

(Theoretical Background)

According to Bethe’s theory [1], a small aperture in a
conducting wall can be approximated by the combination
of an electric dipole normal to the aperture and propor-
tional to the normal component of the exciting electric
field, and a magnetic dipole in the plane of the aperture
that is proportional to the exciting tangential magnetic
field.

The proportionality constants depend on the aperture
size and shape. These constants are referred to as the elec-
tric and magnetic polarizabilities of the aperture. This situ-
ation is represented in Fig. 1. The equivalent dipoles
radiate in the presence of the closed conducting wall to
give the fields transmitted through the aperture. The fields
on the input side of the conducting wall are also affected
by the presence of the aperture, and this effect is
accounted for by the equivalent dipoles on the incident
side of the conductor, with opposite sign. Using the image
theory the electric wall can be removed, doubling the
dipole amplitudes.

The electric and magnetic dipolesPe andPm are:
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(1)

where  is the normal electric field andHt is the
tangential magnetic field evaluated at the center of the
aperture. The electric and magnetic polarizabilitiesαe, αm,
are constants that depend on the size and shape of the
aperture, and have been derived for a variety of simple
shapes [7], [8], [9]. The polarizabilities for circular and
rectangular apertures, which are among the most com-
monly used shapes, are given in Table 1

wherer0 is the radius of the circular hole,l andd are
respectively the length and width of the rectangular slot.
The electric and magnetic polarization currents,Pe and
Pm, can be related to electric and magnetic current
sources, J andM  respectively. We can write:

(2)

2D-TLM: Modeling of a Slot

Consider a narrow slot aperture in the transverse wall
of a waveguide as shown in Fig. 2.

The analysis of this problem can be performed using
the two-dimensional TLM shunt node, which models the
field componentsEy, Hx, Hz. SinceHx is the only magnetic
field tangential to the aperture and there are no electric
fields normal to the aperture, the electric polarization cur-
rentPe is equal to zero, and the magnetic polarization cur-
rentPm has only a x-componentPxm. Therefore, according
to (1),Pxm is given by:

(3)

Table 1: Electric and Magnetic
Polarizabilities

Aperture Shape αe αm

Round Hole

Rectangular Slot
(H across slot)

Pe ε0αe n E⋅( ) n–=

Pm αmHt–=

n E⋅

2
3
---r0

3 4
3
---r0

3

π
16
------ ld

2 π
16
------ ld

2

E∇× jωµ0H– jωµ0Pm–=

H∇× jωε0E jωPe+=

Pxm αmHxδ x x0–( ) δ y y0–( ) δ z z0–( )–=

From Maxwell’s equations we have:

(4)

Equation (4) suggests that the aperture can be mod-
eled with only one TLM cell, provided that a magnetic
polarization currentPxm is introduced. This is equivalent
to altering locally the value of the magnetic permeability
µr by a factor proportional to the magnetic polarizability
αm of the aperture.

In terms of the TLM algorithm this amounts to adding
a short-circuited stub in parallel to the link line passing
through the aperture. In order to preserve the synchronic-
ity of the TLM scheme the length of the stub is set to∆l/2
and the value ofµr is determined by selecting the charac-
teristic impedance Zx of the stub. Given the desired value
µr, the extra inductance which must be provided by the
stub is Ls = (µr -1)µ0∆l/2.

The quantity (µr-1) is the magnetic susceptibilityχm
associated with the magnetic polarizationPxm. Consider-
ing the image effect of the closed wall, which doubles the
value ofPxm, we have:

(5)

The value of Zx is immediately derived from (5), con-

sidering the input impedance formula for a short circuited

stub .

(6)

This extra term can be introduced in two ways:

•Adding a stub, by introducing a local scattering pro-
cess at each propagation time-step

•Directly modeling the inductance Ls, by means of a
discretization of the operator jωLs.

They both can be implemented in the TLM algorithm
very easily. The latter solution has been chosen [10]. The
two alternatives are reported in Fig. 3.

Fig. 3 (a) depicts a short-circuited stub parallel to the
TLM link lines, while Fig. 3 (b) shows the introduction
of the equivalent inductance on the TLM link lines. The
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two link lines at ports 1 and 2 are cascaded with the dis-
cretized scattering matrix of the shunt inductance.

Results

In order to test the proposed methods we have calcu-
lated the first resonant frequency of the cavity shown in
Fig. 4. The cavity is divided in two sub-chambers coupled
by a narrow aperture. We have first analyzed the cavity
using the standard TLM algorithm with four increasingly
finer discretizations. Then we have modeled the aperture
with its equivalent inductance using only the coarsest of
the four meshes, that is with the aperture width equal to
one single cell.

The frequency domain results are shown in Fig. 5. In
order to evaluate the effectiveness of the model we have
considered, as a reference value, the resonant frequency
extrapolated from the results for∆l -> 0 by using Richard-
son extrapolation [11]. This reference value has been used
to evaluate the relative error. All the results are reported in
Table 2

The accuracy of the simulation is highly improved by
the introduction of the equivalent dipole-based model.
Moreover, slots of arbitrarily width and shape can be
promptly simulated without the need of changing the dis-
cretization of the rest of the structure, thus adding a large
flexibility and efficiency to the TLM method.

Conclusions

A novel systematic procedure to incorporate a small
aperture model into a TLM mesh has been proposed. The
method is based on the derivation of an equivalent circuit
model for the aperture obtained from Bethe’s small hole
coupling theory. The procedure requires negligible addi-
tional operations and leads to a saving in computational
time and memory of three orders of magnitude as com-
pared to direct discretization of the aperture.

Table 2: Narrow Slot in a Cavity:
Resonant Frequencies (GHz) and Comparisons

∆l (mm) 1 1/3 1/5 1/11 ∆l ->0

TLM 47.57 50.22 50.63 50.94 51.20

Err. (%) 7.0% 1.9% 1.1% 0.5%

Bethe 50.75

Err. (%) 0.9%

The technique can be extended to handle apertures of
various shapes such as diamonds, circles, and rounded
end slots.
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Figures
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Fig. 1 Aperture in a conducting wall:
Equivalent electric and magnetic dipoles
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Fig. 3 Narrow Slot in a TLM Mesh
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Fig. 4 Cavities Coupled by a Narrow Slot

Fig. 5 Narrow Slot in a Cavity: Resonant Frequencies
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